Binary quasi-perfect linear codes from APN quadratic functions

نویسندگان

  • Chunlei Li
  • Stefan Dodunekov
چکیده

A mapping f from F2m to itself is almost perfect nonlinear (APN) if its directional derivatives in nonzero directions are all 2-to-1. Let Cf be the binary linear code of length 2 − 1, whose parity check matrix has its j-th column [ π f(π) ] , where π is a primitive element in F2m and j = 0, 1, · · · , 2 − 2. For m ≥ 3 and any quadratic APN function f(x) = ∑m−1 i,j=0 ai,jx 2+2 , ai,j ∈ F2m , it is proved that Cf is a quasi-perfect code. As a consequence this gives many classes of binary linear codes with minimum distance 5 and covering radius 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fourier Spectra of New APN Functions

Almost perfect nonlinear (APN) functions on F2n are functions achieving the lowest possible differential uniformity. All APN functions discovered until now are either power or quadratic ones, except for one sporadic multinomial nonquadratic example on F26 due to Edel and Pott. It is well known that certain binary codes with good properties can be obtained from APN functions, and determining the...

متن کامل

Quadratic Equations from APN Power Functions

We develop several tools to derive quadratic equations from algebraic S-boxes and to prove their linear independence. By applying them to all known almost perfect nonlinear (APN) power functions and the inverse function, we can estimate the resistance against algebraic attacks. As a result, we can show that APN functions have different resistance against algebraic attacks, and especially S-boxe...

متن کامل

Schemes, Codes and Quadratic Zero-Difference Balanced Functions

Zero-difference balanced (ZDB) functions were introduced by Ding for the constructions of optimal and perfect systems of sets and of optimal constant composition codes. In order to be used in these two areas of application, ZDB functions have to be defined on cyclic groups. In this paper, we investigate quadratic ZDB functions from the additive group of Fpn to itself of the form G(x t+1), where...

متن کامل

A matrix approach for constructing quadratic APN functions

We find a one to one correspondence between quadratic APN functions without linear and constant terms and a special kind of matrices (We call such matrices as QAMs). Based on the nice mathematical structures of the QAMs, we have developed efficient algorithms to construct quadratic APN functions. On F27 , we have found more than 470 classes of new CCZ-inequivalent quadratic APN functions, which...

متن کامل

A new almost perfect nonlinear function which is not quadratic

Following an example in [13], we show how to change one coordinate function of an almost perfect nonlinear (APN) function in order to obtain new examples. It turns out that this is a very powerful method to construct new APN functions. In particular, we show that the approach can be used to construct “non-quadratic” APN functions. This new example is in remarkable contrast to all recently const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013